Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(4IFJ_1)}(2) \setminus P_{f(6HNO_1)}(2)|=76\),
\(|P_{f(6HNO_1)}(2) \setminus P_{f(4IFJ_1)}(2)|=89\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:001101101100111010001001010010010110110101100111101111110111100001010000011000011000101011101100011111101010111100101000010000100001011111100011111111001101111101000100100001000010110110010011110110001011110010001001000010000101111100000111101001010111100100110010000100001001001001001111110
Pair
\(Z_2\)
Length of longest common subsequence
4IFJ_1,6HNO_1
165
3
4IFJ_1,2QDC_1
187
4
6HNO_1,2QDC_1
158
3
Newick tree
[
4IFJ_1:91.02,
[
6HNO_1:79,2QDC_1:79
]:12.02
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{565
}{\log_{20}
565}-\frac{274}{\log_{20}274})=82.1\)
Status
Protein1
Protein2
d
d1/2
Query variables
4IFJ_1
6HNO_1
101
97.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]