Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(4HKN_1)}(2) \setminus P_{f(2PTT_1)}(2)|=103\),
\(|P_{f(2PTT_1)}(2) \setminus P_{f(4HKN_1)}(2)|=47\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:10000000011011000101001100010101110101000010010001000100000110111110000110100100001100000000010000000100011101011101110011000010111111111011000000000101111101011000000010000111001011001101011
Pair
\(Z_2\)
Length of longest common subsequence
4HKN_1,2PTT_1
150
3
4HKN_1,8PSU_1
197
3
2PTT_1,8PSU_1
217
4
Newick tree
[
8PSU_1:11.54,
[
4HKN_1:75,2PTT_1:75
]:36.54
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{301
}{\log_{20}
301}-\frac{110}{\log_{20}110})=59.7\)
Status
Protein1
Protein2
d
d1/2
Query variables
4HKN_1
2PTT_1
74
58
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]