Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(4GUT_1)}(2) \setminus P_{f(9IME_1)}(2)|=222\),
\(|P_{f(9IME_1)}(2) \setminus P_{f(4GUT_1)}(2)|=15\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:11100000011001001101101000010010000100100100100001000000000100000010011000100010101111000110110000100001001000101010110000011010011010000000110010110100011001111111100011111101001001110100000001110101011010000111010111100010110010001011010101101001001100000101011100111111000000110100011011101110100100100110110001110011101110001110000000111111111111110010011101011010001110110000101101101101101010011111000111010011000011001101001010001010101110110010000001001111001001001110001101001010110101001001010010010100100001110111000110110011100110110101001100100010010100001010010011101111110011101011100001011001111110011101100110001011011101110100011111100101000001110111101110100100001100011010011000011010001100100011101100110011010100111001010111110100001100101101011001001111
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{923
}{\log_{20}
923}-\frac{147}{\log_{20}147})=215.\)
Status
Protein1
Protein2
d
d1/2
Query variables
4GUT_1
9IME_1
273
159.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]