Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(4GRH_1)}(2) \setminus P_{f(9EAK_1)}(2)|=207\),
\(|P_{f(9EAK_1)}(2) \setminus P_{f(4GRH_1)}(2)|=11\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1001001111011101101111000011011111000101010101011111010110101010100000110110110110011000010001000111011111110001100101111101010101011110011111000000101111011001110111111011110110110110111001100100110011001011011010100010101111101011010100101111111101010011000100110101101000111100101010001101001110100010011110100001101011101110011010001010011001010101010110111101111010101010010110010011011001111110001010101110010101001010011111100010001000010101110111001
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{554
}{\log_{20}
554}-\frac{97}{\log_{20}97})=135.\)
Status
Protein1
Protein2
d
d1/2
Query variables
4GRH_1
9EAK_1
180
102.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]