Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(4GMP_1)}(2) \setminus P_{f(5HVC_1)}(2)|=166\),
\(|P_{f(5HVC_1)}(2) \setminus P_{f(4GMP_1)}(2)|=28\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:11001000001000000010010010000100000001101100010001001101100110011111001010101000011010110001000011011110101100000001011001001010100100100011000001101011011000111100101001000110101000100100111111111001110111101000001100000111011010010110111110010101001101000001011110101111001100001111111101100001101111101011110001111001100
Pair
\(Z_2\)
Length of longest common subsequence
4GMP_1,5HVC_1
194
4
4GMP_1,8OFY_1
160
4
5HVC_1,8OFY_1
176
3
Newick tree
[
5HVC_1:96.44,
[
4GMP_1:80,8OFY_1:80
]:16.44
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{418
}{\log_{20}
418}-\frac{95}{\log_{20}95})=98.5\)
Status
Protein1
Protein2
d
d1/2
Query variables
4GMP_1
5HVC_1
128
80.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]