Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(4FSJ_1)}(2) \setminus P_{f(4PGV_1)}(2)|=118\),
\(|P_{f(4PGV_1)}(2) \setminus P_{f(4FSJ_1)}(2)|=47\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:110000100001001110000011110001100100000000000001011011110010011111100111110100011011100101011000011000101011000111111011110101011110110010010110011100111000000000100100101011101000110111010110011010010111100110001100111101111111001000110111000100010101001101100111101011001011010011010011111101001110101101110011101100100010101110011000111001110000011001111111100
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{580
}{\log_{20}
580}-\frac{217}{\log_{20}217})=103.\)
Status
Protein1
Protein2
d
d1/2
Query variables
4FSJ_1
4PGV_1
129
101
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]