Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(4FRA_1)}(2) \setminus P_{f(4DLJ_1)}(2)|=78\),
\(|P_{f(4DLJ_1)}(2) \setminus P_{f(4FRA_1)}(2)|=103\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:111011011010101101000011110111111110101010110001010000111011110001111011100100011110010001100011111010110100101101010001001010010110010000110010011010101010001110110111101010101000011000001000101100010100111111101001001001000111100101101110000010001100010011010011000111111110010101110000110010
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{654
}{\log_{20}
654}-\frac{294}{\log_{20}294})=100.\)
Status
Protein1
Protein2
d
d1/2
Query variables
4FRA_1
4DLJ_1
128
116.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]