Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(4FPH_1)}(2) \setminus P_{f(7SZB_1)}(2)|=134\),
\(|P_{f(7SZB_1)}(2) \setminus P_{f(4FPH_1)}(2)|=29\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1000110001110111101111110110100100101010111011000100001010011100101000011101010010010111110000111000010111000101110100100110011001101110001011000111100000000010101101100010011110010110010111100010000110101001011001100001001110011011100100001001011010010010110010100110000000101100000001001001111101000000110110000100001010101100011000001001111011111110001001001100101000101000100010001000111000000010000100000110110010100001010010100000100111011000011010100011100000010010010111111100001001011011110000011110000101001100001001000010111001010101101001110011000010110100000100100100101100000100101100001101001111001000010011011111100000010100000101100101001100110001111100000100001010011001010100100
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{952
}{\log_{20}
952}-\frac{255}{\log_{20}255})=189.\)
Status
Protein1
Protein2
d
d1/2
Query variables
4FPH_1
7SZB_1
237
160.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]