Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(4FGZ_1)}(2) \setminus P_{f(6GQP_1)}(2)|=64\),
\(|P_{f(6GQP_1)}(2) \setminus P_{f(4FGZ_1)}(2)|=101\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:10110010000011000000001101001111000100111010001100101000001101101111101010000110001101000110110001010001110100110001100010110000111010100000110000011010101110000100000100010001000000110100010110100100110001000100110100001000000110110000110100110001000000100110101000
Pair
\(Z_2\)
Length of longest common subsequence
4FGZ_1,6GQP_1
165
4
4FGZ_1,3TEZ_1
167
4
6GQP_1,3TEZ_1
160
4
Newick tree
[
4FGZ_1:83.97,
[
6GQP_1:80,3TEZ_1:80
]:3.97
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{588
}{\log_{20}
588}-\frac{266}{\log_{20}266})=90.7\)
Status
Protein1
Protein2
d
d1/2
Query variables
4FGZ_1
6GQP_1
116
104.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]