Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(4EXQ_1)}(2) \setminus P_{f(1MXS_1)}(2)|=99\),
\(|P_{f(1MXS_1)}(2) \setminus P_{f(4EXQ_1)}(2)|=51\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:11101100110001101110010000111110011001100010010110111110010010010101100111011111001101101111110111101101101100010110111101110110100110010011001010001111110101101100110111000100100110101011001101010111101010101110111110011111101100010100100111010000011011111100111111001110110111101010110100011101110101010111111011010101110001001101101101100101100110110010000011001010
Pair
\(Z_2\)
Length of longest common subsequence
4EXQ_1,1MXS_1
150
4
4EXQ_1,3ZVL_1
157
4
1MXS_1,3ZVL_1
163
3
Newick tree
[
3ZVL_1:81.61,
[
4EXQ_1:75,1MXS_1:75
]:6.61
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{593
}{\log_{20}
593}-\frac{225}{\log_{20}225})=104.\)
Status
Protein1
Protein2
d
d1/2
Query variables
4EXQ_1
1MXS_1
130
102.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]