Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(4ESM_1)}(2) \setminus P_{f(4ONO_1)}(2)|=73\),
\(|P_{f(4ONO_1)}(2) \setminus P_{f(4ESM_1)}(2)|=109\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:11110100010111101000001110001001011011000010001011010000001111010001101100101010011010010001111011011111111100111001100011101110010010010010110011101111101111011010101110101111111110101001011110011110101111100000010010010100111011011000001001000011100100110101101111010110101111101110011101100011100001
Pair
\(Z_2\)
Length of longest common subsequence
4ESM_1,4ONO_1
182
3
4ESM_1,1PSJ_1
193
3
4ONO_1,1PSJ_1
195
3
Newick tree
[
1PSJ_1:98.92,
[
4ESM_1:91,4ONO_1:91
]:7.92
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{697
}{\log_{20}
697}-\frac{302}{\log_{20}302})=109.\)
Status
Protein1
Protein2
d
d1/2
Query variables
4ESM_1
4ONO_1
138
122
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]