Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(4EDB_1)}(2) \setminus P_{f(2RPD_1)}(2)|=202\),
\(|P_{f(2RPD_1)}(2) \setminus P_{f(4EDB_1)}(2)|=3\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:101100101100100000010011000101000101100000101011011111011000111111101000111000010011001010010001101100001000100100100101110000110001011010000010001000111101001101010000100000011111110011011000110000010101100000001010110010100001010001011011001110101011110011110011101110001110000100001011100011100101101100100100101011011001101000
Pair
\(Z_2\)
Length of longest common subsequence
4EDB_1,2RPD_1
205
1
4EDB_1,6IFW_1
160
4
2RPD_1,6IFW_1
171
1
Newick tree
[
2RPD_1:98.71,
[
4EDB_1:80,6IFW_1:80
]:18.71
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{334
}{\log_{20}
334}-\frac{4}{\log_{20}4})=111.\)
Status
Protein1
Protein2
d
d1/2
Query variables
4EDB_1
2RPD_1
139
70.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]