Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(4DXP_1)}(2) \setminus P_{f(3AHI_1)}(2)|=21\),
\(|P_{f(3AHI_1)}(2) \setminus P_{f(4DXP_1)}(2)|=175\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:10110001010101010101001110101010100100010101001111111001100110010011100100110010001101001000101001110010001010100110010101101110111100001010100001010011101010111110111000001000001001101100011000101100000000101000111001110010000000
Pair
\(Z_2\)
Length of longest common subsequence
4DXP_1,3AHI_1
196
6
4DXP_1,7NRF_1
190
6
3AHI_1,7NRF_1
152
13
Newick tree
[
4DXP_1:10.44,
[
7NRF_1:76,3AHI_1:76
]:26.44
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{1075
}{\log_{20}
1075}-\frac{230}{\log_{20}230})=227.\)
Status
Protein1
Protein2
d
d1/2
Query variables
4DXP_1
3AHI_1
292
183.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]