Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(4DMW_1)}(2) \setminus P_{f(8ICV_1)}(2)|=235\),
\(|P_{f(8ICV_1)}(2) \setminus P_{f(4DMW_1)}(2)|=2\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1100000000000101011000011011001010000000110010000010000000001010010001011100000000001100100011001111000000110001011111101001110010011010100010110000111100100111000000110110001001010010100001011000000110000001001011010011000110000000011000000010010000110101001100001101000011001011110011011110011110101011111000110010010011100101101011100000100000001001000100010111000000001100100101001010111111011001110001001001110010000011000101110000010000011000110010100011100111010111110100010101111010100011010000100010100110101100010010000100110100101000100010000110
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{564
}{\log_{20}
564}-\frac{8}{\log_{20}8})=173.\)
Status
Protein1
Protein2
d
d1/2
Query variables
4DMW_1
8ICV_1
216
109.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]