Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(4DGJ_1)}(2) \setminus P_{f(3VGL_1)}(2)|=84\),
\(|P_{f(3VGL_1)}(2) \setminus P_{f(4DGJ_1)}(2)|=81\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1111001001111111110000011011011000111011001010010100101111101000100100110110011101000000000011110101010000010110110000111110000111110110010010110010111100000000110001000110110001110000100111110000001111110011000111001110101001001100110
Pair
\(Z_2\)
Length of longest common subsequence
4DGJ_1,3VGL_1
165
4
4DGJ_1,6ZOS_1
185
3
3VGL_1,6ZOS_1
156
5
Newick tree
[
4DGJ_1:90.62,
[
3VGL_1:78,6ZOS_1:78
]:12.62
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{556
}{\log_{20}
556}-\frac{235}{\log_{20}235})=91.5\)
Status
Protein1
Protein2
d
d1/2
Query variables
4DGJ_1
3VGL_1
110
99
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]