4DET_1|Chains A, B|Transthyretin|Homo sapiens (9606)
>7HEH_1|Chains A, B|Non-structural protein 3|Severe acute respiratory syndrome coronavirus 2 (2697049)
>8TNC_1|Chains A, B, C|De novo designed protein|synthetic construct (32630)
Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(4DET_1)}(2) \setminus P_{f(7HEH_1)}(2)|=57\),
\(|P_{f(7HEH_1)}(2) \setminus P_{f(4DET_1)}(2)|=82\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:01111011011010111011101100110001011101000001010110000011011001010000010111101100010111010001100001111101000000111001
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{285
}{\log_{20}
285}-\frac{116}{\log_{20}116})=53.0\)
Status
Protein1
Protein2
d
d1/2
Query variables
4DET_1
7HEH_1
68
58
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]