Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(4DEE_1)}(2) \setminus P_{f(4QIZ_1)}(2)|=82\),
\(|P_{f(4QIZ_1)}(2) \setminus P_{f(4DEE_1)}(2)|=80\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:000001110010110111010110101100000011111011101010011100010001010001001011010101001001011100111101000100100100000100100110110000000110001010011110110101101110101100000010101001110110101000010110111100011110111010000000001001010110110011001100110001000111001100111010000100000000100
Pair
\(Z_2\)
Length of longest common subsequence
4DEE_1,4QIZ_1
162
3
4DEE_1,6DZU_1
181
3
4QIZ_1,6DZU_1
167
3
Newick tree
[
6DZU_1:89.00,
[
4DEE_1:81,4QIZ_1:81
]:8.00
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{542
}{\log_{20}
542}-\frac{263}{\log_{20}263})=79.2\)
Status
Protein1
Protein2
d
d1/2
Query variables
4DEE_1
4QIZ_1
103
99.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]