Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(4COW_1)}(2) \setminus P_{f(3UHV_1)}(2)|=107\),
\(|P_{f(3UHV_1)}(2) \setminus P_{f(4COW_1)}(2)|=57\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:110000000000111101001000000010000111001001111001010010011010100000100100101011010100100100000111010011101010001111000110011010000011010010111010101010100010101001111011110110000000010011000101111000100010101011100110111000000111010100000101110100010010000010111100000
Pair
\(Z_2\)
Length of longest common subsequence
4COW_1,3UHV_1
164
4
4COW_1,8FSR_1
184
4
3UHV_1,8FSR_1
194
4
Newick tree
[
8FSR_1:98.35,
[
4COW_1:82,3UHV_1:82
]:16.35
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{413
}{\log_{20}
413}-\frac{146}{\log_{20}146})=79.9\)
Status
Protein1
Protein2
d
d1/2
Query variables
4COW_1
3UHV_1
99
77
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]