Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(4CIZ_1)}(2) \setminus P_{f(9EMD_1)}(2)|=72\),
\(|P_{f(9EMD_1)}(2) \setminus P_{f(4CIZ_1)}(2)|=81\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:10011101011100000101010010000011111100011000100100010000000001100100110101101001111110010000011110110100101101001101010101001011001010110001011011110000001011111010010000101001101001110011000000101101100101101001101000010011011000111010110110011010000011011100011001110100101100010001110011101100010111001111010100011
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{669
}{\log_{20}
669}-\frac{317}{\log_{20}317})=97.3\)
Status
Protein1
Protein2
d
d1/2
Query variables
4CIZ_1
9EMD_1
121
114.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]