Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(4CEI_1)}(2) \setminus P_{f(8URX_1)}(2)|=240\),
\(|P_{f(8URX_1)}(2) \setminus P_{f(4CEI_1)}(2)|=3\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:10110110001000010111001001111111101001111001100101000110100111101001011010001101100011001101010001011001010010010101100000110101110110000101110011001100001010011101100000000010101110010000000101011100110100100001100111000100011111011000110110100111111101001100110100110000010010001111010010110100101111001001001100110010000100010001001101011100110111001001011000001101001000011110100001000100110100001001110000000110001101100110001011111010001001011011111000001000101010010100010001011000011100111101101000001010111101000000001111001000010001001001010101110010011001101001000000010000111110011111011001010111101010010101101111101101100100011110110011111000010110100001100011000111100000100010010101001011000001001110100000010011111110000101011000100000011011101101100100010011010110000011011010000110111111111100101101000011000111100010101010010111111000100011000101101110010001111100000000110101010000111101000010001011111110000110111111010101011011101100001100010001000000101100101111011100010001010010001001000001001000000000001011101101011000111110011011001011001100111001101001000100100001100000011010011011000111011110100001110111110010101001001111011100100000110111000001010100110111111000000010100011001100010101101101101101
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{1335
}{\log_{20}
1335}-\frac{103}{\log_{20}103})=332.\)
Status
Protein1
Protein2
d
d1/2
Query variables
4CEI_1
8URX_1
411
221.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]