Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(4CBG_1)}(2) \setminus P_{f(6MOI_1)}(2)|=174\),
\(|P_{f(6MOI_1)}(2) \setminus P_{f(4CBG_1)}(2)|=22\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:110000000000101011011001000100100110010010010100101101110000110011001100001111111011100100010000101110101101001011011001001010010010101111000111100000101001111101001000101111010111010001000110011110110100110001011110111001000111111000111011001010100010000100100101100001011110011001101101011100110000010101011111011001110110010001011010110000000011100000001101000110011010001001000101000001110010110011100011111001110000101101100000001111110100101000000001101001100111010100000111011110110110010101101100111100100111
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{747
}{\log_{20}
747}-\frac{231}{\log_{20}231})=143.\)
Status
Protein1
Protein2
d
d1/2
Query variables
4CBG_1
6MOI_1
186
121.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]