Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(4BWZ_1)}(2) \setminus P_{f(3NMU_1)}(2)|=57\),
\(|P_{f(3NMU_1)}(2) \setminus P_{f(4BWZ_1)}(2)|=95\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1011001101101111101011110010011111011111111111111100101101110111111111111000100111110011111111111111110101101110011111110111100111010110011110010001111111100111111110101110010101111001111011111111110011101110011110111111111111111110111111111111111100100000100111110011111111111101010111011111110110111111011111111100110011011011110101111111111011110000011111111100111111101111100000110010001010
Pair
\(Z_2\)
Length of longest common subsequence
4BWZ_1,3NMU_1
152
4
4BWZ_1,1ATD_1
160
2
3NMU_1,1ATD_1
200
3
Newick tree
[
1ATD_1:94.91,
[
4BWZ_1:76,3NMU_1:76
]:18.91
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{773
}{\log_{20}
773}-\frac{379}{\log_{20}379})=106.\)
Status
Protein1
Protein2
d
d1/2
Query variables
4BWZ_1
3NMU_1
128
126.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]