Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(4BML_1)}(2) \setminus P_{f(7XUL_1)}(2)|=31\),
\(|P_{f(7XUL_1)}(2) \setminus P_{f(4BML_1)}(2)|=125\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:10010010110010111001000100101101101011011001011011100001011000011101010110001101111011101000011100111000110010011000000101000110111000000110111010101011010111101011110000101110111011111000011001011110100000110010001100011000101001011001111011000011110100100111010000001010111111100011101001110100001010100010111101111010100011101011
Pair
\(Z_2\)
Length of longest common subsequence
4BML_1,7XUL_1
156
4
4BML_1,8UBU_1
164
4
7XUL_1,8UBU_1
120
5
Newick tree
[
4BML_1:85.66,
[
7XUL_1:60,8UBU_1:60
]:25.66
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{1050
}{\log_{20}
1050}-\frac{332}{\log_{20}332})=190.\)
Status
Protein1
Protein2
d
d1/2
Query variables
4BML_1
7XUL_1
236
170
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]