Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(4BBN_1)}(2) \setminus P_{f(1DMZ_1)}(2)|=137\),
\(|P_{f(1DMZ_1)}(2) \setminus P_{f(4BBN_1)}(2)|=38\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1111000000000110001000001100101010010110000001111001011010111010100110011110011111000110100111000100000101010011010010010111011111100101101111011001110011010010010000000101110001001010111000111000000100110011100000000101110101100100011110011101110011011000010111011101010010000000010010001101110111110000010110110100011101110101001100101001101001101000100101110001001100101110000110110
Pair
\(Z_2\)
Length of longest common subsequence
4BBN_1,1DMZ_1
175
4
4BBN_1,3QLL_1
177
4
1DMZ_1,3QLL_1
168
3
Newick tree
[
4BBN_1:89.29,
[
1DMZ_1:84,3QLL_1:84
]:5.29
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{543
}{\log_{20}
543}-\frac{158}{\log_{20}158})=112.\)
Status
Protein1
Protein2
d
d1/2
Query variables
4BBN_1
1DMZ_1
144
99.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]