Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(4AOS_1)}(2) \setminus P_{f(6AHE_1)}(2)|=114\),
\(|P_{f(6AHE_1)}(2) \setminus P_{f(4AOS_1)}(2)|=37\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:101001001101101001000001111111111101100100011010110110111111010001110001001000001010100010100001001011101001100101000101000100111000110101000010010101111111110010011101100101011001011001101010011111010011001111100100111100010001111011100100100010010000100001110100101001101000000110000101111110011100100111000101110001011100111101101000111100110001000000000101101000111110001110011000101111101101101010010111011001000111110001111101110110101110101110111000101011101110101011111010101110110000001010110010010111011101011111111111000110011001001111101
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{816
}{\log_{20}
816}-\frac{267}{\log_{20}267})=150.\)
Status
Protein1
Protein2
d
d1/2
Query variables
4AOS_1
6AHE_1
187
136
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]