Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(4AOJ_1)}(2) \setminus P_{f(7VZR_1)}(2)|=38\),
\(|P_{f(7VZR_1)}(2) \setminus P_{f(4AOJ_1)}(2)|=143\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:11110100101001010110101100100100101001000011101011011110111100001110000111110110010001000100010110110000110111100010111111001001010011000110101111100111111111011111001111110111101100011000011101111011011100010000000111001111011110011000100000110111111011001001100100001100100100100101011010111010100010000010010101011101111010111
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{1194
}{\log_{20}
1194}-\frac{329}{\log_{20}329})=227.\)
Status
Protein1
Protein2
d
d1/2
Query variables
4AOJ_1
7VZR_1
290
198.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]