Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(4AMQ_1)}(2) \setminus P_{f(4RBU_1)}(2)|=161\),
\(|P_{f(4RBU_1)}(2) \setminus P_{f(4AMQ_1)}(2)|=31\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:00000000010000100011101111000100010001110111110000001010100011010010110010100000010001101100100000101101101000011100000001001011101001101001100000010001101001110100101000011110011011101010011000011110011010001111011100011011010001110010110000000111111010100010100010011000111000111010000010001010100100111011001001011010110010010000110001111001100100010001000000010001011100000100100001100111010000110000110
Pair
\(Z_2\)
Length of longest common subsequence
4AMQ_1,4RBU_1
192
6
4AMQ_1,5SEB_1
180
4
4RBU_1,5SEB_1
208
3
Newick tree
[
4RBU_1:10.22,
[
4AMQ_1:90,5SEB_1:90
]:13.22
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{507
}{\log_{20}
507}-\frac{100}{\log_{20}100})=121.\)
Status
Protein1
Protein2
d
d1/2
Query variables
4AMQ_1
4RBU_1
152
93
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]