Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(4ADP_1)}(2) \setminus P_{f(9DYZ_1)}(2)|=250\),
\(|P_{f(9DYZ_1)}(2) \setminus P_{f(4ADP_1)}(2)|=0\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:110100010111101001000011101100011000001000000010101001010010110000001100101110010101101001001011001000011110010010101100100110011000001110011100011010100110011011101011101000111001000110111110011000110010111011100001111000000100010000100000100100110010011001000101111110001000100000101110001100100010111100111111101110100111100001000000010110011000011110110100010110000001011111010000010001001110111001000110011101100110111011110011011110001000101010111001011011111001011011010000100100110110011111101100010110101100110111010011011100010101110101101001101111110100010010100000000
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{587
}{\log_{20}
587}-\frac{8}{\log_{20}8})=179.\)
Status
Protein1
Protein2
d
d1/2
Query variables
4ADP_1
9DYZ_1
226
114
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]