Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(4ACR_1)}(2) \setminus P_{f(2JJX_1)}(2)|=123\),
\(|P_{f(2JJX_1)}(2) \setminus P_{f(4ACR_1)}(2)|=50\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1101000000010001010101011000000101001011011010011010101001010101000000010001100001010011000001101111001001000100110000001010111111010000101100100010100011010100011011101100110010101111000100110010110111011001010100111110011011111001100110111110000111011001001111110101000001101011001010101001100111100011100110011101001110110110000001010110101010101011110000001011100011010100110010101001001110111010000111001000001011101001101110111001001010101001010100011010110001001001001010
Pair
\(Z_2\)
Length of longest common subsequence
4ACR_1,2JJX_1
173
6
4ACR_1,1DXU_1
195
4
2JJX_1,1DXU_1
154
5
Newick tree
[
4ACR_1:96.69,
[
2JJX_1:77,1DXU_1:77
]:19.69
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{733
}{\log_{20}
733}-\frac{255}{\log_{20}255})=132.\)
Status
Protein1
Protein2
d
d1/2
Query variables
4ACR_1
2JJX_1
169
128
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]