Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(3ZWQ_1)}(2) \setminus P_{f(9DNY_1)}(2)|=20\),
\(|P_{f(9DNY_1)}(2) \setminus P_{f(3ZWQ_1)}(2)|=141\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1110111001100111010101010100100010000111101100110010010111011110101001001001111100011111110100000100011010111110100011100011111001001101110000011100101111100111011110111100010011000111011101010101001000110011101011111100010010011010101111010011111110100011000101010110001101111000111011101011100100110011101001111
Pair
\(Z_2\)
Length of longest common subsequence
3ZWQ_1,9DNY_1
161
3
3ZWQ_1,5IUI_1
160
4
9DNY_1,5IUI_1
167
4
Newick tree
[
9DNY_1:82.67,
[
3ZWQ_1:80,5IUI_1:80
]:2.67
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{1131
}{\log_{20}
1131}-\frac{313}{\log_{20}313})=216.\)
Status
Protein1
Protein2
d
d1/2
Query variables
3ZWQ_1
9DNY_1
272
186
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]