Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(3ZOZ_1)}(2) \setminus P_{f(1VOP_1)}(2)|=204\),
\(|P_{f(1VOP_1)}(2) \setminus P_{f(3ZOZ_1)}(2)|=4\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:101000101001010100111010101110000100000101111010101001100111100110101111100001011110100111001111000111010010101111011110010101000101001010010101101011010100110101001110100100011110110011111100010011011001001111111110110010110011001001111111110110110010110011000110110011001000110101110110100100010010101101111111110011000000101100100111011111101011101001110011010001010111110010001010000010010011110101101011111011001
Pair
\(Z_2\)
Length of longest common subsequence
3ZOZ_1,1VOP_1
208
3
3ZOZ_1,8KAK_1
207
3
1VOP_1,8KAK_1
7
4
Newick tree
[
3ZOZ_1:11.78,
[
8KAK_1:3.5,1VOP_1:3.5
]:11.28
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{430
}{\log_{20}
430}-\frac{13}{\log_{20}13})=134.\)
Status
Protein1
Protein2
d
d1/2
Query variables
3ZOZ_1
1VOP_1
165
85
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]