Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(3ZNY_1)}(2) \setminus P_{f(4OAL_1)}(2)|=56\),
\(|P_{f(4OAL_1)}(2) \setminus P_{f(3ZNY_1)}(2)|=110\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:00101000110100001101111110010000110010001110000011111111000000101100010100001100011100010101011010111100000111001110111110101110011000101000010100111101000001011100100101101110000101101101000111010111110111100010110100001111110001111110010010101000001110110110011
Pair
\(Z_2\)
Length of longest common subsequence
3ZNY_1,4OAL_1
166
4
3ZNY_1,1JAY_1
138
4
4OAL_1,1JAY_1
168
3
Newick tree
[
4OAL_1:87.80,
[
3ZNY_1:69,1JAY_1:69
]:18.80
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{787
}{\log_{20}
787}-\frac{263}{\log_{20}263})=144.\)
Status
Protein1
Protein2
d
d1/2
Query variables
3ZNY_1
4OAL_1
176
133.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]