Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(3ZCX_1)}(2) \setminus P_{f(3CGO_1)}(2)|=68\),
\(|P_{f(3CGO_1)}(2) \setminus P_{f(3ZCX_1)}(2)|=83\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:101000000011110101101110111011001100110001000101111000001000101100001111100101010000101110110010000100111011110111010111000011000101110011101110101100111100000010001100100000011111011001111001110000000100011010000100101111011100011101111111010101011110110101011011101001011001001100100001011100001011000001001001101010111110110111100001100001101100111011
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{719
}{\log_{20}
719}-\frac{354}{\log_{20}354})=99.8\)
Status
Protein1
Protein2
d
d1/2
Query variables
3ZCX_1
3CGO_1
124
122
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]