Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(3WWX_1)}(2) \setminus P_{f(6CNY_1)}(2)|=133\),
\(|P_{f(6CNY_1)}(2) \setminus P_{f(3WWX_1)}(2)|=46\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1110100110001101111011111110100100010101100110000011010001010111010101010100110011111101010010010100110000110000001110101111111000000101001111111001010111010000001111111100101010101100011011010100111000111010011000100010111001001010111111011000001001001110101110011001000101010010110111110001001101110111101000110100011001110101011100001101010101100
Pair
\(Z_2\)
Length of longest common subsequence
3WWX_1,6CNY_1
179
3
3WWX_1,2TPT_1
144
4
6CNY_1,2TPT_1
165
5
Newick tree
[
6CNY_1:90.27,
[
3WWX_1:72,2TPT_1:72
]:18.27
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{500
}{\log_{20}
500}-\frac{151}{\log_{20}151})=102.\)
Status
Protein1
Protein2
d
d1/2
Query variables
3WWX_1
6CNY_1
130
92
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]