Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(3WOY_1)}(2) \setminus P_{f(8VSV_1)}(2)|=96\),
\(|P_{f(8VSV_1)}(2) \setminus P_{f(3WOY_1)}(2)|=71\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:11111100001101100110101000001000100100110000001000101100100111111100001100101101110101001000110010101101001110010011011110110111001011100101110111000011011111000000001110000101101110010000100011111001001100101010101000011100011101001000101000001000100
Pair
\(Z_2\)
Length of longest common subsequence
3WOY_1,8VSV_1
167
3
3WOY_1,4KJV_1
163
3
8VSV_1,4KJV_1
162
3
Newick tree
[
3WOY_1:83.00,
[
4KJV_1:81,8VSV_1:81
]:2.00
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{479
}{\log_{20}
479}-\frac{228}{\log_{20}228})=72.5\)
Status
Protein1
Protein2
d
d1/2
Query variables
3WOY_1
8VSV_1
91
87.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]