Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(3WGB_1)}(2) \setminus P_{f(4JZT_1)}(2)|=113\),
\(|P_{f(4JZT_1)}(2) \setminus P_{f(3WGB_1)}(2)|=65\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:10010010100001001001100011010110010100111011010110111001111110101001111100000101111101101000010101111011101111010101111010111110010101001101000001011111010010011000110101011011011110100100111110010101001111111011110011110100100111111001111101111110001101100000100110111111110101101000111101001001111111010111101010101100101000010011011000111
Pair
\(Z_2\)
Length of longest common subsequence
3WGB_1,4JZT_1
178
4
3WGB_1,4ICC_1
176
5
4JZT_1,4ICC_1
174
4
Newick tree
[
3WGB_1:88.99,
[
4ICC_1:87,4JZT_1:87
]:1.99
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{519
}{\log_{20}
519}-\frac{178}{\log_{20}178})=99.1\)
Status
Protein1
Protein2
d
d1/2
Query variables
3WGB_1
4JZT_1
122
93.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]