Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(3WDD_1)}(2) \setminus P_{f(5EJM_1)}(2)|=16\),
\(|P_{f(5EJM_1)}(2) \setminus P_{f(3WDD_1)}(2)|=175\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:100010001001111100010110000110001111110010111100100111010110001001110100110101110101001101010011011000110001111110010111101110111010010001101101010000000
Pair
\(Z_2\)
Length of longest common subsequence
3WDD_1,5EJM_1
191
4
3WDD_1,4ZZQ_1
213
3
5EJM_1,4ZZQ_1
172
5
Newick tree
[
3WDD_1:10.71,
[
5EJM_1:86,4ZZQ_1:86
]:19.71
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{709
}{\log_{20}
709}-\frac{153}{\log_{20}153})=158.\)
Status
Protein1
Protein2
d
d1/2
Query variables
3WDD_1
5EJM_1
202
123.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]