Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(3WBZ_1)}(2) \setminus P_{f(5EPQ_1)}(2)|=115\),
\(|P_{f(5EPQ_1)}(2) \setminus P_{f(3WBZ_1)}(2)|=59\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1101100000010110000011100011101010110010010010010010110110011001100000111101000000111000001000001010011001100001011000110011010011010101110101001000101001000100100001101110101010010001110110000011100011000000010001011100100000000101000010010000001010100101100001100011100
Pair
\(Z_2\)
Length of longest common subsequence
3WBZ_1,5EPQ_1
174
3
3WBZ_1,7NIE_1
188
3
5EPQ_1,7NIE_1
212
4
Newick tree
[
7NIE_1:10.20,
[
3WBZ_1:87,5EPQ_1:87
]:17.20
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{435
}{\log_{20}
435}-\frac{164}{\log_{20}164})=80.3\)
Status
Protein1
Protein2
d
d1/2
Query variables
3WBZ_1
5EPQ_1
103
82.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]