Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(3VXB_1)}(2) \setminus P_{f(9JGD_1)}(2)|=133\),
\(|P_{f(9JGD_1)}(2) \setminus P_{f(3VXB_1)}(2)|=62\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1000000111111100110111101010101011011010111010011010001100101010100101010100111000110100111010110111011110101000110110100110000110011110111110101000111101101111100001110001011001001100110100111011111110111011110011001111011001001010111011110110010011001111011001000011111111010111011101000001101101100011101110101111010011101000101010010001111110001001000011001011000110011000101011010001100110101010011010100111001001111000100110110110
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{665
}{\log_{20}
665}-\frac{229}{\log_{20}229})=122.\)
Status
Protein1
Protein2
d
d1/2
Query variables
3VXB_1
9JGD_1
158
120
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]