Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(3UYY_1)}(2) \setminus P_{f(8AEM_1)}(2)|=98\),
\(|P_{f(8AEM_1)}(2) \setminus P_{f(3UYY_1)}(2)|=72\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1010111101000010010011010100111001000100110100101011010000010110100110010001011010001010101101000110101000011110100001101010110100011110101101010111111100111001101110110111110101110100110000001110101110111001101111001000011011010110000100111101111000100110100101110100001111100011101001010100110100111010111101111100100101100000111100010001111001000110111101
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{686
}{\log_{20}
686}-\frac{328}{\log_{20}328})=98.6\)
Status
Protein1
Protein2
d
d1/2
Query variables
3UYY_1
8AEM_1
125
119.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]