Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(3UJP_1)}(2) \setminus P_{f(5NKP_1)}(2)|=93\),
\(|P_{f(5NKP_1)}(2) \setminus P_{f(3UJP_1)}(2)|=72\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1010101000011000101100010100000001100101110110011100111001001110101001010011010010111001101001100111010011011100110111110110000101011101001110100100111010100100001011100001011000111010011100011100011100110001100101111010001010010011001000011011000010001000110101101110101001000011110110110001011001111100100
Pair
\(Z_2\)
Length of longest common subsequence
3UJP_1,5NKP_1
165
4
3UJP_1,1WZI_1
159
4
5NKP_1,1WZI_1
156
4
Newick tree
[
3UJP_1:81.99,
[
1WZI_1:78,5NKP_1:78
]:3.99
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{599
}{\log_{20}
599}-\frac{292}{\log_{20}292})=86.0\)
Status
Protein1
Protein2
d
d1/2
Query variables
3UJP_1
5NKP_1
106
99
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]