Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(3UAS_1)}(2) \setminus P_{f(4UUI_1)}(2)|=103\),
\(|P_{f(4UUI_1)}(2) \setminus P_{f(3UAS_1)}(2)|=51\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:11000000101111101111110110100011100110100001011010110011111010011001110010110101011110111010111110100101100101101001111000100010001001100100001111000111001000110011110010000111101101110010110010001101101110011100001000100100111001000010101001001101011010000001000100001110110111110000000100111111001010001000100111000111100010110001110010011011111110010000010101110000111110011001001001001011011010111000011111011001011011100011111001100101101111001010100011101110001011100000
Pair
\(Z_2\)
Length of longest common subsequence
3UAS_1,4UUI_1
154
4
3UAS_1,7YZJ_1
175
4
4UUI_1,7YZJ_1
179
3
Newick tree
[
7YZJ_1:92.02,
[
3UAS_1:77,4UUI_1:77
]:15.02
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{780
}{\log_{20}
780}-\frac{304}{\log_{20}304})=130.\)
Status
Protein1
Protein2
d
d1/2
Query variables
3UAS_1
4UUI_1
159
130.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]