Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(3TVW_1)}(2) \setminus P_{f(1QBM_1)}(2)|=169\),
\(|P_{f(1QBM_1)}(2) \setminus P_{f(3TVW_1)}(2)|=34\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1101010101110101100110100001011100010011011001000010010101010001110001100001010010001110111111101010010010100111110010101101110000110010001000111010111001101111001111101110011010011001010001100100100000110000110100011100111000111100101011111100010001101011000011111011011001101010111101101100111001000010111001100011001011001111001101100111000111111000001001101010000000101110100000110011100101100101110111110101111111111100001001111011010010011001101111001100101100100100111111101011011000110011001011101110000111101110101011011110101010010101010101111010101010100001100100100000010001000011101000100011000001111010101011010000001110111000101001001111010001000011001000110100100110100101101000000011011000000100010110100110011001000000110110011011000000011001010000000
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{983
}{\log_{20}
983}-\frac{214}{\log_{20}214})=209.\)
Status
Protein1
Protein2
d
d1/2
Query variables
3TVW_1
1QBM_1
268
169
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]