Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(3TRJ_1)}(2) \setminus P_{f(4OWG_1)}(2)|=62\),
\(|P_{f(4OWG_1)}(2) \setminus P_{f(3TRJ_1)}(2)|=106\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:001100100100010001010100101111111011011100100110111010100111100100011001010011111111010110101110001100111001111100001111100010000110110010010101111011011110010000010101100011010000111100100110001111100
Pair
\(Z_2\)
Length of longest common subsequence
3TRJ_1,4OWG_1
168
4
3TRJ_1,2AUX_1
168
4
4OWG_1,2AUX_1
168
3
Newick tree
[
2AUX_1:84,
[
3TRJ_1:84,4OWG_1:84
]:0
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{449
}{\log_{20}
449}-\frac{201}{\log_{20}201})=72.5\)
Status
Protein1
Protein2
d
d1/2
Query variables
3TRJ_1
4OWG_1
96
84.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]