Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(3TEX_1)}(2) \setminus P_{f(3JUO_1)}(2)|=163\),
\(|P_{f(3JUO_1)}(2) \setminus P_{f(3TEX_1)}(2)|=40\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:0100000110000000011110010010101111100000101011000100110000010011101110100000001100100010111000011001000001010010100101000000100011010101000000001100001011010000000000000011101100000111001010100101000001101110010000110000001001001001000100101010001010100111110111010100111000000000000000001000000000000011000000011100010111000110011100100101010100100101110011100011110000110101000010011110000100011111101000100011010000110100000101000010101100010010101001001001110100001011101001011000111101001100001010100110111110010101000100100101010000000100011010100100110010101010111000010000001111100011001000110000011110100010011010110100001100110000011010010001001101000000111010010001010110000011010001000001100111100010011
Pair
\(Z_2\)
Length of longest common subsequence
3TEX_1,3JUO_1
203
4
3TEX_1,6OFA_1
251
3
3JUO_1,6OFA_1
158
2
Newick tree
[
3TEX_1:12.64,
[
3JUO_1:79,6OFA_1:79
]:44.64
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{900
}{\log_{20}
900}-\frac{185}{\log_{20}185})=197.\)
Status
Protein1
Protein2
d
d1/2
Query variables
3TEX_1
3JUO_1
246
155.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]