Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(3TCP_1)}(2) \setminus P_{f(2DYP_1)}(2)|=99\),
\(|P_{f(2DYP_1)}(2) \setminus P_{f(3TCP_1)}(2)|=92\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1100000000001111010001000100111000111110111010110110101000010010111001010000000100110011010010010110111101010001110111111110010100011000100110011100110111011111001000011000111000110001010110111000100100000101101110111100110010000001111110110110011010111000010001101001001000100100110001000110010101101010011001101
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{590
}{\log_{20}
590}-\frac{277}{\log_{20}277})=88.0\)
Status
Protein1
Protein2
d
d1/2
Query variables
3TCP_1
2DYP_1
112
105.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]