Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(3TAT_1)}(2) \setminus P_{f(8TDY_1)}(2)|=220\),
\(|P_{f(8TDY_1)}(2) \setminus P_{f(3TAT_1)}(2)|=4\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1100101011011101100100010000101011100000111101011101010101010110101110110000011111111100111000011010011101110111011000110011110010100011111111101000110001001101001110100111001111010000101101000010111011010011111011001111110001011011101111111000100110101001111011000101110111010101000000110111011111100011010111010010001111000110110001100010011000111000110110100100011101110101011110010100110111111
Pair
\(Z_2\)
Length of longest common subsequence
3TAT_1,8TDY_1
224
4
3TAT_1,7MOZ_1
158
3
8TDY_1,7MOZ_1
232
3
Newick tree
[
8TDY_1:12.50,
[
3TAT_1:79,7MOZ_1:79
]:44.50
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{413
}{\log_{20}
413}-\frac{16}{\log_{20}16})=127.\)
Status
Protein1
Protein2
d
d1/2
Query variables
3TAT_1
8TDY_1
164
84.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]