Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(3SUC_1)}(2) \setminus P_{f(8ZKT_1)}(2)|=45\),
\(|P_{f(8ZKT_1)}(2) \setminus P_{f(3SUC_1)}(2)|=85\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:0000001101110110010011101000110101100010110011001111011010111001101100011011100011101100110100110000100100011100101010000110110111100000101010001010010110001011010011100101101001101000111000010111001100000001011000000101010001101001000111000000100111010101011110010101010100100001001100110110010100111001101010000110001010111101001111011010000101100011010101000010111101100000110111100110110100101000100110110110010100101110110011111001000101011001101011011100000110110111010000010100011111000100101000111000000000000111100000101000011101111100011111010000101000111000110001000101110010101001010101000101100100110010011101100101101001010010010011111000111111000101011110001111100010000110100111010101000011000000101111110111010001001001011111100100111001001000001011111110
Pair
\(Z_2\)
Length of longest common subsequence
3SUC_1,8ZKT_1
130
4
3SUC_1,9AZI_1
254
3
8ZKT_1,9AZI_1
286
3
Newick tree
[
9AZI_1:15.58,
[
3SUC_1:65,8ZKT_1:65
]:86.58
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{2033
}{\log_{20}
2033}-\frac{772}{\log_{20}772})=307.\)
Status
Protein1
Protein2
d
d1/2
Query variables
3SUC_1
8ZKT_1
382
309.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]