Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(3SIZ_1)}(2) \setminus P_{f(7SWK_1)}(2)|=32\),
\(|P_{f(7SWK_1)}(2) \setminus P_{f(3SIZ_1)}(2)|=128\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:100001011011001111101100001101010100010010110111100110111010001100111010110110000010010101110111101111100101010110011001111001101110111011100110111011100011100010010010011100011101111101101100101101111100101100111111111001001101
Pair
\(Z_2\)
Length of longest common subsequence
3SIZ_1,7SWK_1
160
4
3SIZ_1,2CMM_1
126
5
7SWK_1,2CMM_1
192
4
Newick tree
[
7SWK_1:95.32,
[
3SIZ_1:63,2CMM_1:63
]:32.32
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{726
}{\log_{20}
726}-\frac{228}{\log_{20}228})=138.\)
Status
Protein1
Protein2
d
d1/2
Query variables
3SIZ_1
7SWK_1
171
123.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]