Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(3RYS_1)}(2) \setminus P_{f(2MNZ_1)}(2)|=163\),
\(|P_{f(2MNZ_1)}(2) \setminus P_{f(3RYS_1)}(2)|=22\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1001100000011111010101010101011111100011011000100100000100100110100101111000001001001010011111100101110101000011110001011101110000011100111111100100001101100111101111111100101101100100100011011100110110011100100110110100100110010000110011100111010110010101100110011101111110101000011011101000100110110101100101110010001100100111100100110101011
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{398
}{\log_{20}
398}-\frac{55}{\log_{20}55})=107.\)
Status
Protein1
Protein2
d
d1/2
Query variables
3RYS_1
2MNZ_1
134
77.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]